Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Sci Rep ; 11(1): 24065, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1585806

RESUMEN

COVID-19 is a respiratory disease that causes infection in both lungs and the upper respiratory tract. The World Health Organization (WHO) has declared it a global pandemic because of its rapid spread across the globe. The most common way for COVID-19 diagnosis is real-time reverse transcription-polymerase chain reaction (RT-PCR) which takes a significant amount of time to get the result. Computer based medical image analysis is more beneficial for the diagnosis of such disease as it can give better results in less time. Computed Tomography (CT) scans are used to monitor lung diseases including COVID-19. In this work, a hybrid model for COVID-19 detection has developed which has two key stages. In the first stage, we have fine-tuned the parameters of the pre-trained convolutional neural networks (CNNs) to extract some features from the COVID-19 affected lungs. As pre-trained CNNs, we have used two standard CNNs namely, GoogleNet and ResNet18. Then, we have proposed a hybrid meta-heuristic feature selection (FS) algorithm, named as Manta Ray Foraging based Golden Ratio Optimizer (MRFGRO) to select the most significant feature subset. The proposed model is implemented over three publicly available datasets, namely, COVID-CT dataset, SARS-COV-2 dataset, and MOSMED dataset, and attains state-of-the-art classification accuracies of 99.15%, 99.42% and 95.57% respectively. Obtained results confirm that the proposed approach is quite efficient when compared to the local texture descriptors used for COVID-19 detection from chest CT-scan images.


Asunto(s)
COVID-19/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Algoritmos , Prueba de COVID-19/métodos , Aprendizaje Profundo , Heurística , Humanos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
2.
Results Phys ; 33: 105103, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1586713

RESUMEN

This research study consists of a newly proposed Atangana-Baleanu derivative for transmission dynamics of the coronavirus (COVID-19) epidemic. Taking the advantage of non-local Atangana-Baleanu fractional-derivative approach, the dynamics of the well-known COVID-19 have been examined and analyzed with the induction of various infection phases and multiple routes of transmissions. For this purpose, an attempt is made to present a novel approach that initially formulates the proposed model using classical integer-order differential equations, followed by application of the fractal fractional derivative for obtaining the fractional COVID-19 model having arbitrary order Ψ and the fractal dimension Ξ . With this motive, some basic properties of the model that include equilibria and reproduction number are presented as well. Then, the stability of the equilibrium points is examined. Furthermore, a novel numerical method is introduced based on Adams-Bashforth fractal-fractional approach for the derivation of an iterative scheme of the fractal-fractional ABC model. This in turns, has helped us to obtained detailed graphical representation for several values of fractional and fractal orders Ψ and Ξ , respectively. In the end, graphical results and numerical simulation are presented for comprehending the impacts of the different model parameters and fractional order on the disease dynamics and the control. The outcomes of this research would provide strong theoretical insights for understanding mechanism of the infectious diseases and help the worldwide practitioners in adopting controlling strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA